Enantioselective Synthesis of 4-Heterosubstituted Cyclopentenones[†]

Kathrin Ulbrich,[‡] Peter Kreitmeier,[‡] Tirayut Vilaivan,*⁸ and Oliver Reiser^{*,‡}

‡Institut für Organische Chemie, Universitaet Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany, and

[§]Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand

S Supporting Information

ABSTRACT: Racemic 4-hydroxycyclopentenone, readily derived from furfuryl alcohol, can be transformed via its O-Boc derivative to 4-acyloxy, 4-aryloxy-, 4amino-, or 4-thio-substituted cyclopentenones with high enantioselectivity by palladium-catalyzed kinetic resolution via nucleophilic allylic substitutions. Applying this methodology, a short formal synthesis of ent-noraristeromycin was readily accomplished.

nantiopure 4-hydroxycyclopentenone (2) (Figure 1) has been recognized as a most versatile chiral intermediate,

Figure 1. 4-Hydroxycyclopentenone as synthon in the synthesis of drugs.

having been used as a key synthon for the synthesis of natural products and pharmaceutical drugs. Prominent examples are found in the synthesis of prostaglandin PGE_1 methyl ester,^{2a} the HIV protease inhibitor GRL-06579,^{2b} or the farnesyltransferase inhibitor Arglabin.²

Consequently, a considerable number of synthetic approaches toward racemic³ and enantiopure 2 and derivatives thereof utilizing the chiral pool,⁴ chiral reagents,⁵ or catalysts⁶ have been developed. A majority of these transformations involve selectively changing the oxidation state of the corresponding $1,3$ -cis-diol⁷ or $1,3$ -diketone.⁸

The direct deracemization of (\pm) -2 or its O-acyl derivative was achieved by enzymatic resolution with lipases⁹ or penicillin G acylase.¹⁰ Kinetic resolution of (\pm) -2 had also been achieved by catalytic asymmetric isomerization¹¹ or hydrogenation.¹² Surprisingly, in light of the well-established methodology for asymmetric nucleophilic substitutions of cyclic and acyclic allylic alcohols, as well as their esters, by chiral palladium catalysts (Tsuji-Trost reaction), $13-16$ this approach was not investigated with (\pm) -2. Arguably, the most direct access to

racemic (\pm) -2 is the transformation of furfuryl alcohol (1) under aqueous acidic conditions, 17 a process that could recently be greatly improved moving from batch to flow conditions in microreactors (Scheme 1).¹⁸ We report here the easily prepared

O-Boc derivative (\pm) -3b as an excellent substrate for resolving (\pm) -2 by regioselectively introducing oxygen, nitrogen, and sulfur nucleophiles with high asymmetric induction.

We started our investigation by converting (\pm) -2 to its corresponding acetate (\pm) -3a, which was subjected to palladium-catalyzed allylations with various nucleophiles using Trost's ligand (R,R) -5. However, under various conditions tried, (\pm) -3a turned out to be a sluggish substrate for the title transformation, resulting in low selectivities which were accompanied by decomposition of the starting material at extended reaction times (Table 1, entries 1, 2). Obviously, the allyl acetate moiety in (\pm) -3a is deactivated by the conjugated carbonyl group, making a more activated derivative necessary. Gratifyingly, turning to the O-Boc derivative (\pm) -3b, the allylpalladium complex formation occurred readily even at -78 $\rm{^{\circ}C}$, allowing the introduction of various O-, S-, and Nnucleophiles. Initially, the nucleophiles were used in stoichio-

Received: February 26, 2013 Published: March 25, 2013

Table 1. Palladium-Catalyzed Allylic Substitutions of 3^a

					3 yield		6 yield		
entry	3	$\overline{4}$	time (h)	temp (°C)	yield (%)	$%$ ee	yield (%)	$%$ ee	S^b
	3a	4b	18	25	23	26	12	91	24
	3a	4c		0	50	25	30	77	11
Ő.	3 _b	4a		Ω	46	96	35(3a)	90	31
4	3 _b	4b		Ω	34	99	34	93	44
Č	3 _b	4c			31	90	46	90	44
6	3 _b	4c ^c	4	-20	43	>99	45	>99	501
	3 _b	4d		Ω	44	95	41	91	41
8	3 _b	4e	17	-78	33	>99	42	93	56
9	3 _b	4f	17	-78	38	92	39	93	50
10	3 _b	4g	18	rt	31	>99	50 ^d	96 ^d	194
11	3 _b	$4g^c$	16	rt	42	>99	48^e	95 ^e	113

 $a^a(\pm)$ -3 (0.5 mmol), 4 (0.24 mmol), Pd₂(dba)₃ (1.2 mol %, 2.3 mol % Pd based on the nucleophile), (R,R)-5 (3.7 mol % based on the nucleophile) in dichloromethane (2 mL). Absolute configurations of 6a and 6d were obtained by comparison of specific rotation values with literature (see the Experimental Section) as well as by X-ray crystallography (6g, see the Supporting Information). $\frac{b^2}{{2\pi}}$ Selectivity factor.¹⁹ c mmol scale, Pd₂(dba)₃ (0.5) mol %; 1 mol % of Pd based on the nucleophile), (R,R) -5 (2 mol % based on the nucleophile). 436% , 99% ee after single recrystallization from ethanol. $e_{43\%}$, 97% ee after single recrystallization from ethanol.

metric quantities with the aim to achieve a dynamic kinetic resolution, which had been proven possible for hydroxybutenolide and related substrates.^{14−16,20} However, for (\pm) -3b as substrate, the reaction only took place in a kinetic resolution mode because the reaction di[d not pr](#page-3-0)oceed to completion even when the nucleophiles (acetate and phthalimide) were present in excess, and moreover, the products were obtained with low optical purities in such cases. On the other hand, good to excellent enantioselectivities were obtained when the amount of the nucleophiles was decreased to 0.5 equiv or less (Table 1). Carboxylic acids (entries 3, 5, and 7) and phenol (entry 4) proved to be suitable nucleophiles, giving generally selectivity factors of >30 in the kinetic resolution at room temperature within 1 h reaction time. For 1-naphthoic acid (entry 6), a scale-up to 5 mmol of the substrate (\pm) -3b with concurrent lowering of the temperature to −20 °C allowed the isolation of both recovered starting material (R)-3b and product 6c in enantiopure forms (>99% ee) with almost perfect yield.

Likewise, sulfur nucleophiles (entries 8 and 9) were also successfully employed; however, because of their greater reactivity we found that the reactions are best carried out at −78 °C to give 6e and 6f with selectivity factors around 50. This successful use of thiols as nucleophiles in a palladiumcatalyzed allylic substitution represents new examples of the very rare reactions of this type.^{13,20} Finally, phthalimide allowed the enantioselective introduction of a nitrogen nucleophile into the cyclopentenone moiety [\(en](#page-3-0)tries 10 and 11), being especially relevant for the synthesis of carbocyclic nucleosides.

Indeed, starting from (\pm) -3b, a short formal synthesis of the enantiomer of the antiviral and antitumor drug noraristeromycin (9) was readily accomplished (Scheme 2). The key

intermediate 8, previously synthesized from desymmetrized cis-4-cyclopentene-1,3-diol, $2^{1,22}$ can be obtained in one step from (±)-3b and 6-chloropurine (7) in 46% yield (92% yield based on 7) and in 94% ee, [whic](#page-3-0)h can be raised to 98% ee (39% yield) by a single recrystallization. In addition, (R) -3b was also recovered in 47% yield and 98% ee.

In summary, we have demonstrated a successful kinetic resolution of (\pm) -3 via Pd-catalyzed asymmetric allylic substitution. Excellent enantioselectivities of both substitution products and recovered starting materials were obtained even at low catalyst loading (1−2 mol % of Pd, 2−4 mol % of (R,R)-5 based on the nucleophile). The scope of participating nucleophiles is very broad: phenols, carboxylic acids, thiols,

and nitrogen-containing heterocycles. This method should provide a potentially useful access to a variety of optically active 4-substituted-2-cyclopentenone derivatives.

EXPERIMENTAL SECTION

General Information. All reagents of which the preparation is not described were obtained from commercial suppliers and used without further purification. 4-Hydroxy-2-cyclopentenone (\pm) -2, 4-acetoxy-2cyclopentenone (\pm) -3, and the (R,R) -5 were prepared according to published procedures.^{9,18,23} CH_2Cl_2 and THF were obtained from a solvent purification system. CH_2Cl_2 was degassed by three freeze− pump−thaw cycles. [Hex](#page-3-0)[an](#page-4-0)es and EtOAc were distilled before use. Chemical shifts are reported in ppm from $CHCl₃$ (7.26 ppm) as internal standard on the δ scale. 13 C chemical shifts are reported in ppm from CHCl₃ (77 ppm) as internal standard on the δ scale. The ¹³C signals assignment were assisted by DEPT 90 and DEPT 135 experiments. The optical rotation was determined on a polarimeter at 589 nm wavelength (sodium ^D line) in a 0.5 dm measuring cell of ca. 1 mL volume.

General Procedure for Pd-Catalyzed Kinetic Resolution. To a solution of (\pm) -3b (0.50 mmol) and the nucleophile (0.24 mmol) in dry, degassed CH_2Cl_2 (2 mL) under nitrogen at the specified temperature was added the catalyst solution, which was separately prepared by stirring $Pd_2(dba)$ ₃ (2.6 mg, 0.0028 mmol, 2.3 mol % Pd based on 4) and (R,R) -5 (6.1 mg, 0.0088 mmol, 3.7 mol % based on 4) in dry, degassed CH_2Cl_2 (1 mL) under nitrogen until the initially purple solution turned yellow-brown (2−3 min). The progress of the reaction was monitored by TLC. Once the reaction was complete, the reaction mixture was directly loaded onto a silica gel column and the product eluted by an appropriate PE/EtOAc mixture.

General Procedure for Pd-Catalyzed Kinetic Resolution on **Larger Scale.** To a solution of (\pm) -3b (5 mmol) and the nucleophile (2.4 mmol) in dry, degassed CH_2Cl_2 (20 mL) under nitrogen at the specified temperature was added the catalyst solution, which was separately prepared by stirring $Pd_2(dba)$ ₃ (11 mg, 0.012 mmol, 1 mol % Pd based on 4) and (R,R)-5 (33 mg, 0.048 mmol, 2 mol % based on 4) in dry, degassed CH_2Cl_2 (10 mL) under nitrogen until the initially purple solution turned yellow-brown (2−3 min). The reaction mixture was monitored by TLC. Once the reaction was complete, the solvent was evaporated, and the crude product was purified by column chromatography with PE/EtOAc as eluent mixture.

4-(tert-Butoxycarbonyloxy)-2-cyclopentenone (\pm) -3b. To a solution of 4-hydroxy-2-cyclopentenone (\pm) -2 (0.500 g, 5 mmol) and Boc₂O (1.167 g, 6 mmol) in THF (5 mL) were added triethylamine (0.84 mL, 6 mmol) and DMAP (10 mg). After the solution was stirred at room temperature for 30 min, the solvent was removed and the residue purified by column chromatography to give the product as a white solid (0.865 g, 87%): mp 38–39 °C; $R_f = 0.33$ (PE/EtOAc 90:10); ¹H NMR (300 MHz, CDCl₃) δ = 1.47 (s, 9H), 2.41 (dd, 1H, J $= 18.7, 2.3 \text{ Hz}$), 2.84 (dd, 1H, J = 18.7, 6.4 Hz), 5.72 (dtd, 1H, J = 6.1, 2.3, 1.3 Hz), 6.34 (dd, 1H, J = 5.7, 1.3 Hz), 7.60 (dd, 1H, J = 5.7, 2.4 Hz); ¹³C NMR (75 MHz, CDCl₃) δ = 27.8, 41.0, 74.2, 83.3, 137.2, 152.7, 158.6, 204.6; IR (solid) ν_{max} (cm⁻¹) = 1731, 1716; HRMS (EIquadrupole) m/z calcd for $C_{10}H_{14}O_4:198.0892$ $[M^{\bullet+}]$, found 198.0896.

Recovered starting material from kinetic resolution: (R)-4-(tertbutoxycarbonyloxy)-2-cyclopentenone (R)-3b: 99% ee (t_R major, minor = 12.9, 14.2 min, Chiralcel OJ-H, 4.6 \times 250 mm, 10 μ m, heptane/*i*-PrOH 99:1, 1.0 mL/min); $[\alpha]^{22}$ _D = +85.0 (c = 1.60, $CHCl₃$).

(S)-4-Acetoxycyclopent-2-enone (3a): colorless oil (Table 1, entry 3: 35%, 50 mg, 1 mmol of starting material (\pm) -3b applied). 90% ee (t_R major, minor =28.7, 18.1 min, Chiralcel AS-H 4.6 \times 250 mm 10 μ m, heptane/*i*-PrOH 90:10, 1.0 mL/min); $R_f = 0.22$ (PE/EtO[Ac](#page-1-0) 80:20); $[\alpha]^{23}$ _D = -103.9 (c = 1.22, CHCl₃) (lit.²⁴ $[\alpha]^{20}$ _D = -111 (c = 0.51, CHCl₃)); ¹H NMR (300 MHz, CDCl₃) δ = 2.09 (s, 3H), 2.32 $(dd, 1H, J = 18.7, 2.2 Hz$), 2.83 (dd, 1H, $J = 18.8, 6.4 Hz$ $J = 18.8, 6.4 Hz$ $J = 18.8, 6.4 Hz$), 5.85 (dtd, 1H, $J = 6.1, 2.3, 1.4$ Hz), 6.33 (dd, 1H, $J = 5.7, 1.3$ Hz), 7.57 (dd, 1H, J $= 5.7, 2.4$ Hz); ¹³C NMR (75 MHz, CDCl₃) $\delta = 20.9, 41.1, 72.0,$

137.1, 159.0, 170.5, 204.9; IR (film): ν_{max} (cm⁻¹) = 1717; HRMS (EIquadrupole) m/z calcd for $C_7H_8O_3$ 140.0473 [M*⁺], found 140.0476.

(S)-4-Phenoxycyclopent-2-enone (6b): colorless oil (Table 1, entry 4: 34%, 28 mg). 93% ee (t_R major, minor =13.5, 12.4 min, Phenomenex Lux Cellulose-1 4.6 \times 250 mm 5 μ m, heptane/i-PrOH 90:10, 1.0 mL/min); R_f [=](#page-1-0) 0.20 (PE/EtOAc 90:10); $[\alpha]^{22}$ _D = -7.2 (c = 1.36, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 2.47 (dd, 1H, J = 18.4, 2.1 Hz), 2.90 (dd, 1H, $J = 18.4$, 6.0 Hz), 5.47 (dtd, 1H, $J = 5.8$, 2.2, 1.3 Hz), 6.38 (dd, 1H, $J = 5.7$, 1.2 Hz), 6.93 (dd, 2H, $J = 8.7$ Hz), 7.01 (t, 1H, $J = 7.4$ Hz), 7.33 (dd, 2H, $J = 8.6$, 7.5 Hz), 7.72 (dd, 1H, J $= 5.7, 2.3$ Hz); ¹³C NMR (75 MHz, CDCl₃) $\delta = 41.9, 75.1, 115.3$ 121.8, 129.8, 136.6, 157.3, 159.7, 205.1; IR (film) $\nu_{\text{max}}(\text{cm}^{-1}) = 1720$; HRMS (EI-quadrupole) m/z calcd for $C_{11}H_{10}O_2$ 174.0681 [M^{*+}], found 174.0677.

(S)-4-(1-Naphthoyl)oxycyclopent-2-enone (6c): white solid (Table 1, entry 6: 45%, 566 mg); mp 60−62 °C; >99% ee (t^R major, minor = 14.7, 16.9 min, Phenomenex Lux Cellulose-1 4.6 \times 250 mm 5 μ m, heptane/*i*-PrOH 90:10, 1.0 mL/min); $R_f = 0.44$ (PE/ EtOAc [80](#page-1-0):20); $[\alpha]^{22}$ _D = -143.7 (c = 1.05, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 2.56 (dd, 1H, J = 18.8, 2.2 Hz), 3.01 (dd, 1H, J = 18.8, 6.4 Hz), 6.20 (dtd, 1H, J = 6.4, 2.3, 1.4 Hz), 6.42 (dd, 1H, J = 5.7, 1.3 Hz), 7.47−7.57 (m, 2H), 7.64 (ddd, 1H, J = 8.6, 6.9, 1.5 Hz), 7.76 (dd, 1H, J = 5.7, 2.4 Hz), 7.90 (dd, 1H, J = 8.1, 1.4 Hz), 8.05 (d, 1H, J $= 2.0$ Hz), 8.20 (dd, 1H, J = 7.3, 1.3 Hz), 8.94 (d, 1H, J = 8.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ = 41.3, 72.5, 124.5, 125.6, 125.9, 126.5, 128.1, 128.8, 130.7, 131.4, 133.9, 134.1, 137.3, 159.1, 166.8, 205.0; IR (film) $\nu_{\text{max}}(\text{cm}^{-1})$ = 1712; HRMS (EI-quadrupole) m/z calcd for $C_{16}H_{12}O_3$ 252.0786 [M^{*+}], found: 252.0784.

(S)-4-(4-Bromobenzoyl)oxycyclopent-2-enone (6d): white solid (Table 1, entry 7: 41%, 58 mg); mp 92−93 °C (lit.²⁵ mp 89 °C); 91% ee (t_R major, minor = 13.8, 15.3 min, Phenomenex Lux Cellulose-1 4.6 \times 250 mm 5 μ m, heptane/i-PrOH 70:30, [0](#page-4-0).5 mL/ min); $R_f = 0.20$ $R_f = 0.20$ $R_f = 0.20$ (PE/EtOAc 90:10); $[\alpha]_{\text{D}}^2 = -166.0$ (c = 1.46, CHCl₃) (lit.²⁵ [α]_D = -167.7 ($c = 0.43$, CHCl₃)); ¹H NMR (300 MHz, CDCl₃) δ = 2.48 (dd, 1H, J = 18.8, 2.2 Hz), 2.95 (dd, 1H, J = 18.8, 6.4 Hz[\), 6](#page-4-0).10 (dtd, 1H, $J = 6.1$, 2.2, 1.2 Hz), 6.41 (dd, 1H, $J = 5.7$, 1.2 Hz), 7.60 (d, 2H, $J = 8.6$ Hz), 7.68 (dd, 1H, $J = 5.7$, 2.4 Hz), 7.89 (d, 2H, J = 8.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ = 41.1, 72.7, 128.2, 128.8, 131.3, 132.0, 137.4, 158.7, 165.3, 204.7; IR (solid) ν_{max} (cm⁻¹) = 1704; HRMS (EI-quadrupole) m/z calcd for $C_{12}H_9BrO_3$ 279.9733 [M•⁺], found 279.9740.

(S)-4-(Benzylthio)cyclopent-2-enone (6e): colorless oil (Table 1, entry 8: 42%, 42 mg); 93% ee (t_R major, minor = 16.0, 14.8 min, Chiralcel OJ-H 4.6 × 250 mm 10 μm, heptane/i-PrOH 85:15, 1.0 mL/ min); $R_f = 0.15$ (PE/EtOAc 90:10); $\left[\alpha \right]_{D}^{26} = -163.2$ (c = 1.13, [C](#page-1-0)HCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 2.30 (dd, 1H, J = 19.2, 2.1 Hz), 2.73 (dd, 1H, J = 19.2, 6.5 Hz), 3.74−3.84 (m, 2H), 3.91 (ddt, 1H, J = 6.5, 2.6, 2.0 Hz), 6.19 (dd, 1H, J = 5.6, 1.8 Hz), 7.24−7.37 (m, 5H), 7.46 (dd, 1H, J = 5.6, 2.6, Hz); ¹³C NMR (75 MHz, CDCl₃) δ = 35.7, 42.7, 43.3, 127.5, 128.8, 128.9, 134.6, 137.6, 163.4, 207.3; IR (film) $\nu_{\text{max}}(\text{cm}^{-1})$ = 1715; HRMS (EI-quadrupole) m/z calcd for $C_{12}H_{12}OS$ 204.0609 [M^{*+}], found 204.0606.

(S)-4-(Dodecylthio)cyclopent-2-enone (6f): colorless oil (Table 1, entry 9: 39%, 54 mg); 93% ee (t_R major, minor = 18.47, 15.60 min, Chiralcel AS-H 4.6×250 mm 10 μ m, heptane/i-PrOH 85:15, 1.0 mL/ min); $R_f = 0.18$ (PE/EtOAc 90:10); $[\alpha]_{\text{D}}^{22} = -193.8$ (c = 1.56, [C](#page-1-0)HCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 0.87 (t, 3H, J = 6.7 Hz), 1.25 (m, 16H), 1.36 (m, 2H), 1.58 (m, 2H), 2.37 (dd, 1H, $J = 19.2, 2.1$ Hz), 2.51 (dd, 2H, $J = 7.7, 7.1$ Hz), 2.84 (dd, 1H, $J = 19.2, 6.6$ Hz), 4.01 (ddt, 1H, $J = 6.5, 2.5, 2.0$ Hz), 6.22 (dd, 1H, $J = 5.6, 1.8$ Hz), 7.57 (dd, 1H, J = 5.6, 2.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ = 14.2, 22.7, 29.0, 29.2, 29.5, 29.6, 29.7, 29.7, 29.7, 32.0, 42.8, 43.5, 134.3, 163.9, 207.6; IR (KBr) $\nu_{\text{max}}(\text{cm}^{-1})$ = 2923, 2853, 1720; HRMS (EIquadrupole) m/z calcd for $C_{17}H_{30}OS$ 282.2017 $[M^{\bullet+}]$, found 282.2021.

(S)-4-Phthalimidocyclopent-2-enone (6g): long white needles (Table 1, entry 10: 50%, 56 mg); mp 156−159 °C dec; 96% ee (t_R major, minor = 27.2, 30.2 min, Phenomenex Lux Cellulose-1 4.6 \times 250 mm 5 μ m, heptane/*i*-PrOH 90:10, 1.0 mL/min); $R_f = 0.15$ (PE/ EtOAc [8](#page-1-0)0:20); $[\alpha]^{23}$ _D = -230.8 (c = 1.07, CHCl₃); ¹H NMR (300

MHz, CDCl₃) δ = 2.75 (dd, 1H, J = 18.3, 3.5 Hz), 2.85 (dd, 1H, J = 18.2, 6.8 Hz), 5.54 (ddt, 1H, J = 6.8, 3.5, 2.3 Hz), 6.44 (dd, 1H, J = 5.7, 2.2 Hz), 7.52 (dd, 1H, J = 5.7, 2.4 Hz), 7.72−7.78 (m, 2H), 7.82−7.89 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 39.6, 49.7, 123.6, 131.7, 134.4, 136.2, 159.6, 167.6, 205.2; IR (solid) $\nu_{\text{max}} (\text{cm}^{-1}) = 1777, 1700;$ HRMS (EI-quadrupole) m/z calcd for $C_{13}H_9NO_3$ 227.0582 $[M^{\bullet+}]$, found 227.0583.

(S)-4-(6-Chloro-9H-purin-9-yl)cyclopent-2-enone (8). To a solution of (\pm) -3b (991 mg, 5 mmol) and 6-chloropurine (7) (371 mg, 2.4 mmol) in dry, degassed dichloromethane (20 mL) under nitrogen at 0 °C was added the catalyst solution. It was separately prepared by stirring $Pd_2(dba)$ ₃ (11 mg, 0.012 mmol, 1 mol % Pd based on 7) and (R,R)-5 (33 mg, 0.048 mmol, 2 mol % Pd based on 7) in dry, degassed dichloromethane (10 mL) under nitrogen until the initially purple solution turned yellow-brown (2−3 min). After 24 h of stirring at 0 °C the solvent was evaporated. The crude product was purified by column chromatography with PE:EtOAc (10:1) for recovering starting material 3b (47% yield, 466 mg, 98% ee) and EtOAc for product as eluent mixture. Compound 8 was obtained as a white solid (46% yield, 536 mg, 94% ee) which gave colorless crystals after recrystallization (39% yield, 463 mg, 98% ee): mp 131−133 °C (lit.²¹ mp 135.5−136 °C); 98% ee (t_R major, minor = 24.43, 20.55 min, Chiralcel AS-H 4.6 × 250 mm 10 μm, heptane:i-PrOH 50:50, 0.5 mL/min); $R_f = 0.25$ (EtOAc); $[\alpha]^{22}$ _D = -114.5 (c = 0.98, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 2.69$ (dd, 1H, J = 18.8, 2.8 Hz), 3.18 $(dd, 1H, J = 18.8, 7.2 Hz$, 6.01 (ddd, 1H, $J = 7.2, 4.8, 2.5 Hz$), 6.65 $(dd, 1H, J = 5.7, 2.0 Hz$, 7.69 $(dd, 1H, J = 5.7, 2.5 Hz$, 8.08 $(s, 1H)$, 8.76 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 41.7, 54.5, 131.9, 138.4, 142.8, 151.4, 151.6, 152.3, 157.0, 203.5; IR (solid) $\nu_{\text{max}} (\text{cm}^{-1}) = 1720$; HRMS (ESI-TOF) m/z calcd for C₁₀H₇ClN₄O 235.0381 [M + H]⁺, , found 235.0384. The experimental data are in accordance with literature. 21

■ ASSOCIATED CONTENT

S Supporting Information

Full experimental details and characterization of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTH[OR INFORMATIO](http://pubs.acs.org)N

Corresponding Author

*E-mail: $(T.V.)$ vtirayut@chula.ac.th, $(O.R.)$ oliver.reiser@ chemie.uni-regensburg.de.

Notes

[The authors declare no c](mailto:oliver.reiser@chemie.uni-regensburg.de)[ompeting](mailto:vtirayut@chula.ac.th) financial inte[rest.](mailto:oliver.reiser@chemie.uni-regensburg.de)

■ ACKNOWLEDGMENTS

This work was supported by the Alexander von Humboldt Foundation (fellowship for T.V.) and the Deutsche Bundesumweltstiftung (KONAROM AZ26920).

■ **DEDICATION**

† In memory of Robert E. Gawley. This work was greatly inspired by the many insightful discussions on "Principles of Asymmetric Synthesis" with Prof. Robert E. Gawley, mentor, colleague, and friend. For an insightful article on the sensibility of the term % ee, which is nevertheless used throughout our article since no issues of diastereoselectivity arise and optically pure catalysts are employed, see: Gawley, R. E. J. Org. Chem. 2006, 71, 2411−2146. He will be dearly missed.

■ REFERENCES

(1) Leading review: Roche, S. P.; Aitken, D. J. Eur. J. Org. Chem. 2010, 28, 5339−5358.

(2) (a) Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2002, 67, 7244−7254. (b) Mihara, H.; Sohtome, Y.; Matsunaga,

S.; Shibasaki, M. Chem.- Asian J. 2008, 3, 359-366. (c) Kalidindi, S.; Jeong, W. B; Schall, A.; Bandichhor, R.; Nosse, B.; Reiser, O. Angew. Chem., Int. Ed. 2007, 46, 6361−6363.

(3) (a) Barton, D. H. R.; Hulshof, L. A. J. Chem. Soc., Perkin Trans. 1 1977, 1103−1106. (b) Corey, E. J.; Mehrotra, M. M. J. Am. Chem. Soc. 1984, 106, 3384−3384. (c) Kao, T.-C.; Chuang, G. J.; Liao, C.-C. Angew. Chem., Int. Ed. 2008, 47, 7325−7327. (d) Shono, T.; Matsumura, Y.; Hamaguchi, H.; Nakamura, K. Chem. Lett. 1976, 5, 1249−1252. (e) Mucha, B.; Hoffmann, H. M. R. Tetrahedron Lett. 1989, 30, 4489−4492. (f) Caddick, S.; Khan, S. J. Chem. Soc., Chem. Commun. 1995, 1971−1972. (g) Vassilikogiannakis, G.; Stratakis, M. Angew. Chem., Int. Ed. 2003, 42, 5465−5468. (h) Takeda, K.; Fujisawa, M.; Makino, T.; Yoshii, E.; Yamaguchi, K. J. Am. Chem. Soc. 1993, 115, 9351−9352.

(4) (a) Ogura, K.; Yamashita, M.; Tsuchihashi, G. Tetrahedron Lett. 1976, 17, 759−762. (b) Khanapure, S. P.; Najafi, N.; Manna, S.; Yang, J.-J.; Rokach, J. J. Org. Chem. 1995, 60, 7548−7551. (c) McAllister, G. D.; Taylor, R. J. K. Tetrahedron Lett. 2001, 42, 1197–1200. (d) Paul, K. G.; Johnson, F.; Favara, D. J. Am. Chem. Soc. 1976, 98, 1285−1286. (e) Gallos, J. K.; Damianou, K. C.; Dellios, C. C. Tetrahedron Lett. 2001, 42, 5769−5771. (f) Ingate, S. T.; Marco-Contellers, J. Org. Prep. Proced. Int. 1998, 30, 121−143.

(5) (a) Morita, A.; Kuwahara, S. Org. Lett. 2006, 8, 1613−1616. (b) Rivero, M. R.; de la Rosa, J. C.; Carretero, J. C. J. Am. Chem. Soc. 2003, 125, 14992−14993.

(6) (a) Dickmeiss, G.; De Sio, V.; Udmark, J.; Poulsen, T. B.; Marcos, V.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2009, 48, 6650−6653. (b) Batsanov, A. S.; Knowles, J. P.; Lightfoot, A. P.; Maw, G.; Thirsk, C. E.; Twiddle, S. J. R.; Whiting, A. Org. Lett. 2007, 9, 5565−5568. (7) Sih, C. J. WO 8607611A1, 31 Dec 1986.

(8) Noyori, R.; Tomino, I.; Yamada, M.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6717−6725.

(9) Ghorpade, S. R.; Bastawade, K. B.; Gokhale, D. V.; Shinde, P. D.; Mahajan, V. A.; Kalkote, U. R.; Ravindranathan, T. Tetrahedron: Asymmetry 1999, 10, 4115−4122.

(10) Kumaraguru, T.; Fadnavis, N. W. Tetrahedron: Asymmetry 2012, 23, 775−779.

(11) Kitamura, M.; Manabe, K.; Noyori, R.; Takaya, H. Tetrahedron Lett. 1987, 28, 4719−4720.

(12) Kitamura, M.; Kasahara, I.; Manabe, K.; Noyori, R.; Takaya, H. J. Org. Chem. 1988, 53, 708−710.

(13) (a) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010, 1, 427−440. (b) Trost, B. M.; van Vranken, D. L. Chem. Rev. 1996, 96, 395−422.

(14) (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 3543−3544. (b) Trost, B. M.; Crawley, M. L. Chem.-Eur. J. 2004, 10, 2237−2252.

(15) (a) Shan, M.; O'Doherty, G. A. Org. Lett. 2010, 12, 2986−2989. (b) Babu, R. S.; O'Doherty, G. A. J. Am. Chem. Soc. 2003, 125, 12406− 12407.

(16) (a) Comely, A. C.; Eelkema, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2003, 125, 8714−8715. (b) van der Deen, H.; van Oeveren, A.; Kellogg, R. M.; Feringa, B. L. Tetrahedron Lett. 1999, 40, 1755−1758.

(17) Piancatelli, G.; Scettri, A.; Barbardoro, S. Tetrahedron Lett. 1976, 17, 3555−3558.

(18) Ulbrich, K.; Kreitmeier, P.; Reiser, O. Synlett 2010, 2037−2040.

(19) Kagan, H. B.; Fiaud, J.-C. Top. Stereochem. 1988, 18, 249−330.

(20) (a) Gais, H.-J.; Jagusch, T.; Spalthoff, N.; Gerhards, F.; Frank, M.; Raabe, G. *Chem.—Eur. J.* **2003**, 9, 4202−4221. (b) Lüssem, B. J.; Gais, H.-J. J. Org. Chem. 2004, 69, 4041−4052.

(21) Boojamra, C. G.; Parrish, J. P.; Sperandio, D.; Gao, Y.; Petrakovsky, O. V.; Lee, S. K.; Markevitch, D. Y.; Vela, J. E.; Laflamme, G.; Chen, J. M.; Ray, A. S.; Barron, A. C.; Sparacino, M. L.; Desai, M. C.; Kim, C. U.; Cihlar, T.; Mackman, R. L. Bioorg. Med. Chem. 2009, 17, 1739−1746.

(22) Kitade, Y.; Kozaki, A.; Miwa, T.; Nakanishi, M. Tetrahedron 2002, 58, 1271−1277.

The Journal of Organic Chemistry Note and The Second S

- (23) Trost, B. M.; van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992, 114, 9327−9343.
- (24) Mandai, T.; Matsumoto, S.; Kohama, M.; Kawada, M.; Tsuji, J.; Saito, S.; Moriwake, T. J. Org. Chem. 1990, 55, 5671−5673.
- (25) Iguchi, K.; Kaneta, S.; Tsune, C.; Yamada, Y. Chem. Pharm. Bull. 1989, 37, 1173−1175.